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Abstract. High-precision breast cancer prognosis is crucial for early dis-
ease identification, avoiding hazardous side-effects of unnecessary ther-
apies, and decreasing mortality rates through personalized and tailored
treatment regimens. However, designing a prognosis model continues to
be challenging, given the intricate relationship between distinct genetic
attributes, varied clinical results of drug therapies, the noisy nature of
gene expressions, and the high-class imbalance seen in multimodal cancer
data. Furthermore, because labeled omics data collection is costly and
requires highly-trained experts, the data available is very limited. This
makes the design of the conventional machine and deep learning models
incredibly challenging as they require large quantities of data for learning
the underlying intricate patterns and would otherwise overfit, decreasing
model precision. Moreover, all present models suffer from a ‘closed world
assumption.’ These models, once trained, cannot be updated in real-time
(when more omics data is available in the future) without a complete
re-training. The present study is the first to introduce the ‘Fuzzy’ way
towards Breast cancer prognosis, framing the task as an incremental
learning problem. The proposed approach allows the model to contin-
ually update its learned feature space on a non-stationary multimodal
data stream emulating the human brain’s remarkable quality to learn
over time. We demonstrate the model’s ability to learn complex rela-
tionships between different multimodal attributes, training on severely
imbalanced and limited data by mapping it to a high-dimensional ‘fused’
feature space. The proposed model surpasses state-of-the-art machine
learning (ML) models significantly. These results suggest that predic-
tion through ‘fuzzy intelligence’ is a promising approach towards breast
cancer prognosis.
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1 Introduction

According to the American Society of Oncology, Breast Cancer or Breast Carci-
noma is the most frequently occurring cancer amongst women. In 2020, breast
cancer affected 276, 480 women in the United States alone. The development of
a Breast cancer prognosis model can help oncologists offer personalized treat-
ment plans, especially in the case of the more aggressive Invasive breast cancer,
which spreads within the body, reducing 5-year survival rates to as low as 27%.
Moreover, an effective prognosis can help to increase life expectancy, especially
if the patient is a short-term survivor. Breast cancer prognosis is challenging
due to its underlying heterogeneous nature and high complexity. Patients in the
same stage and similar clinical characteristics often undergo different therapies,
with disparate responses in most cases affecting overall survival. This makes the
design of a co-relative prognosis model challenging and, therefore, of practical
interest to Oncologists. Recent epidemiological and linkage research has estab-
lished that mutations in genes and lack of ‘alleles’ in the BRCA1 locus increase
susceptibility to breast cancer. Moreover, gene expression and DNA copy num-
ber alteration (CNA) data are quite noisy and large (order of 2 × 104 features).
However, the number of training samples is very less, making patients’ character-
ization as long-term (>5-year) and short-term survivors (<5-year) a challenging
task.

Related Works. Several studies have focused on predicting survival rates in
patients diagnosed with breast cancer but have certain limitations. [1] was the
first to propose a prognosis model but used only gene expression profiles. Recent
development in high throughput microarrays and gene expression technologies
has shown that gene signatures are not the only contributing factor in breast
cancer. Assuming different genes of a particular patient may have significant
relations amongst themselves, [2] used support vector machine (SVM), while [3]
used Random Forest coupled with efficient feature selection for high accuracy
prognosis. The deep belief network proposed by [4] combined two independent
microarray data, i.e., gene expression and clinical while using principal compo-
nent analysis (PCA) for dimensionality reduction. The major limitation of these
models was that they assumed that different modalities have the same feature
representations. Recently, deep learning-based supervised feature extraction has
gained immense attention [5]. Recent work by [6] used a score-level fusion of
coefficients for integrating multi-modal data. However, the major disadvantage
of the model was that these coefficients need to be manually determined, which
is an iterative and challenging task in itself. Work by [7] combined CNN-based
stacked feature extraction with various ML models. The major limitation of this
work was that the proposed method used models which are quite data-intensive
and cannot work on severely imbalanced datasets. Also, the study lacks cross-
validation on larger datasets required for deep learning models. Furthermore,
since these models are trained on limited data, they may be prone to overfitting.
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Fig. 1. Illustration of the A. Conventional prognosis models with ‘closed world assump-
tion’ B. The required re-training for conventional leaned feature space update C. Pro-
posed real-time update X : (ah1 , ah2 , ..., ahn) → i, j,k of learned fused feature space

Contribution. The significant contributions and novel aspects of this work are-

1. The present work is the first to formulate Cancer Prognosis as an incremental
learning problem combining multimodal omics data and proposes a de novo
cognitively-inspired ‘fuzzy’ network for Breast Cancer Prognosis. The pro-
posed model outperforms other state-of-the-art ML models by a significant
margin. Furthermore, as compared to prior techniques, real-time architec-
ture update eliminates the need for model re-training if new labeled data is
available in the future.

2. The model’s other novelty lies in its capacity to attain high classification
accuracy despite being trained on limited data samples, as proven experi-
mentally, in contrast to previously proposed models that need large amounts
of multi-omics data difficult and costly to obtain.

3. Another unique feature of the model lies in its robustness to high-class imbal-
ance, commonly seen in real-world multi-omics datasets, as demonstrated in
the experiments performed. On the contrary, as the class imbalance in the
dataset increases, most ML and deep learning models exhibit a significant
reduction in classification accuracy.

2 Proposed Methodology

Figure 2 illustrates the architecture of the proposed Breast cancer prognosis
model. This section discusses in detail the proposed methodology.

Weighted K-NN and mRMR Feature Selection. Firstly, the Weighted
nearest neighbor algorithm [8] is used for estimating the missing gene expression
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and CNA profiles in the dataset. Secondly, feature selection using the mRMR
(Minimum redundancy maximum relevance) algorithm [9,10], which reduces
dimensionality without significant data loss was used to escape the curse of
dimensionality. Here, gene expression profiles were reduced from 24368 → 400,
CNA from 26298 → 200 and clinical from 27 → 25 [6]. Further, the gene
expression features are normalized and discretized into three categories: under-
expression (−1), over-expression (1) and baseline (0), i.e., ∈ {−1, 0, 1} [9]. The
CNA features are discretized ∈ {−2,−1, 0, 1, 2} and clinical data is normalized
∈ [0, 1] using min-max normalization.

Stacked CNN for Multimodal Feature Extraction and Fusion. Since
different data modalities may have different feature representations, the direct
feature fusion of multi-sourced data to a deep neural net may not be ideal.
Therefore separate CNN models [7] are used for each: clinical, gene expression
and CNA. Each of the CNNs is trained on a single METABRIC modality with
AUC value as the evaluation metrics. Binary-cross entropy is used as the loss
function L with L2 regularization and learning rate 10−3 for 8 mini-batches and
20 training epochs as,

L(yt, ŷt) = − 1
N

N∑

i=0

[
yt(i) log ŷt(i)−(1−yt(i)) log(1− ŷt(i))

]
+

1
2
λ

K∑

k=1

nk∑

j=1

mk∑

i=1

wk2

ij

where N is the batch size, K is the number of weight matrices in the CNN, Wk =
(wk

ij)(mk×nk) is the kth weight matrix, yt and ŷt are the actual and predicted
labels. A feature map i.e., element-wise � followed by addition between the filter
matrix and corresponding values of input matrix is produced. Glorot normal
initializer [12] is used for filter matrix initialization. It selects random numbers

with mean = 0 and standard deviation in,
[
−

√
2

ni+no
,
√

2
ni+no

]
, where ni and

no represents number of input and output units for selected layer, respectively.
For the Convolution layer, 4 filters were used with size 15, and the stride size
being 2. The introduced hidden layer had 150 hidden units. The obtained hidden
feature vectors from each trained CNNs are fused to get stacked features.

Mapping n-dimensional ‘Fused’ Feature Space. The obtained stacked fea-
ture vector {ah, Ci} for each patient is passed to the input nodes {a1, ..., ah}
of the fuzzy classifier [13] after normalization ∈ [0.01, 0.99]. The fuzzy classi-
fier works by creating hyperboxes H [14] which is a geometrical shape defined
in the n-dimensional feature space. Parameters Vj = (vj1, vj2, ..., vjn) and
Wj = (wj1, wj2, ..., wjn) are used to define the min and max-coordinates of H,
while ‘θ’ i.e., the hyperbox expansion coefficient ∈ (0, 1) represents its size and
‘γ’ represents the fuzziness control parameter.

Incremental Learning Based Model Training. Fig. 1 illustrates the incre-
mental learning approach, on which the proposed model is based. For each input
feature vector, Classifying Neurons (CLN) performs the classification of learned
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Fig. 2. Architecture of the proposed Breast cancer prognosis model based on ‘Fuzzy’
Incremental Learning for classifying patients as long and short-term survivors on mul-
timodal omics (i.e., gene expressions, copy number alteration and clinical) data

data using min-max hyperboxes. In CLNs, neuron bj represents hyperbox fuzzy
set Bj = Ah, Vj ,Wj , f(Ah, Vj ,Wj)∀(Ah ∈ In). To compute class memberships,
activation function by [15] is used to assign membership value = 1 when the test
sample falls within H. In other cases, when test sample lies outside H, the mem-
bership value is calculated on the basis of its distance from extreme co-ordinates
of H. The classifying neuron activation function i.e., bj is defined as,

bj(ah, Vj ,Wj) = min
i=1..n

(
min

[(
1 − f

(
ahi − Wji, γ

))
,
(
1 − f

(
Vji − ahi, γ

))])

where, f(x, γ) = 0 if xγ < 0; 1 if xγ > 1 and equal to xγ if it lies ∈ [0, 1]. In
the middle layer, the input nodes and the hyperbox (H) nodes are connected
together. These connections represents V and W of the n-dimensional hyper-
box fuzzy set [16]. During training, the neurons in the middle layer are created
dynamically and connection between the H node bj to a class node Cj , is rep-
resented by matrix U, where, uij = 1 if bj ∈ Cj else uij = 0. This real-time
architecture update allows for the midway introduction of new labeled data.
More labeled multimodal omics data, if available, in future may be directly
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passed through the trained model to update its learned fused feature space, thus
enabling Incremental learning.

Whenever a training sample is encountered that doesn’t belong to a class the
model has learned previously, a H node is created. During training, the model
tries to accommodate subsequent samples {ah, Ci} in the previously made H
belonging to the same class using conditions below [13]. If expansion of any of
the existing hyperboxes belonging to that class is not feasible, a new H is added;
i.e., for a new training sample {ah, Ci}, a hyperbox {bj , Cj} is found such that
Cj = Ci or Cj = C0 which has the highest membership value and satisfying-

1. θmax ≥ 1
n

∑n
i=1(max(wji, ahi) − min(vji, ahi))

2. bj is not associated with any OCN/CCN
3. if Ci = C0 or Cj = C0 then μj > 0, where μj is membership with bj ,

Adjust min-max coordinates of bj , as,

V new
ji = min(V old

ji , ahi),
Wnew

ji = max(W old
ji , ahi), where i = 1, 2, ..., n

and if Cj = C0 and Ci �= C0 then Cj = Ci

If no suitable bj is present then a novel hyperbox H for class Ci is created
with Vj = Wj = ah; i.e., a point hyperbox.

Cognitively-Inspired Reflex Section. The Reflex section is cognitively-
inspired [16] from the human brain and handles cases of H overlap and con-
tainment which may arise due to visual feature overlap in the high dimensional
feature space. The Overlap Compensation Neuron (OCN) becomes active if the
test data lies within the overlap space and generates two compensation outputs,
one each for the two overlapping classes with activation function-

djp = T (bj(ah, Vj ,Wj) − 1) ×
(

− 1 +
1
n

n∑

i=1

max
(

ahi

wpji

,
vpji

ahi

))

where, T (x) = 0 if x < 0 and 1 if x ≥ 0. The Containment Compensation Neuron
(CCN) overcomes H containment cases and has activation function-

ej = −1 × T (bj(ah, V,W ) − 1)

The final class for each sample is computed as the argmax of the sum of the
membership and compensation values.

3 Experiments and Results

3.1 Dataset and Evaluation Metrics

The Molecular Taxonomy of Breast Cancer International Consortium [17] data
contains the clinical data, gene expression profiles and CNA profiles of 1980
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breast cancer patients in the METABRIC trial. The pre-processed METABRICS
data at (https://github.com/USTC-HIlab/MDNNMD) is used in this study for
validating the proposed model. In datasets which are skewed towards a particular
class, accuracy alone may be misleading while accessing model performance.
Therefore, on imbalanced datasets, precision along with accuracy is considered
as a better evaluation metric [18].

3.2 Exp. 01. Evaluation and Comparison of Model Performance on
Limited Data Subset Configuration

In the first experiment, the model is trained on limited data subset configu-
rations, i.e., n = 200, 300, 400, 500 (with no class-imbalance), where n is the
number of samples. The obtained results are compared with state-of-the-art
ML models trained on the same number of data samples (see Table 1). Here,
confusion-matrix based evaluation metrics was used for performance compari-
son. Further, it is to be noted that the same feature selection and pre-processing
techniques (Weighted k-NN algorithm and mRMR Feature selection) are used
while implementing the ML models for a fair comparison of results. The proposed
model outperforms all other models with a significant margin in all data subset
configurations, i.e., for n = 200, 300, 400, 500. On n = 300 samples data, the pro-
posed model surpasses the best-performed ML model by 16.81% on the accuracy,
16.31% on precision, and 15.93% on recall. This demonstrates the strong ability
of the model to achieve high performance on limited datasets. Furthermore, it is
seen that as the number of training samples varies, the second-best performing
model loses consistency, i.e., for n = 200, the Naive Bayes is the second best-
performed model, its performance decreases for n = 300, 400, 500, where Ridge
classifier and Random forest are seen performing better. This illustrates that
no single ML model exhibits robust and consistent performance while training
on limited data. On the contrary, the proposed model, which outperforms other
models, demonstrates consistency on all subset configurations of limited data.

3.3 Exp. 02. Evaluation and Comparison of Model Performance on
Severely Imbalanced Data Configuration

Most multi-omics datasets available suffer from high-class imbalance (example,
75% − 25% class distribution in METABRICS trail) since positive samples are
difficult to obtain compared to the negative ones. Most deep learning and ML
models exhibit a reduction in performance on high class-imbalance. To demon-
strate the model’s robustness to class imbalance, we compare the model per-
formance on two dataset subset configurations: first with no class imbalance
(50% − 50% class distribution) and second with severely skewed class distribu-
tion of 75% − 25%. The obtained results (see Table 3) are compared with ML
models trained on the same subset configuration. Here, precision is considered
as better evaluation metric than accuracy alone [18]. It is seen that the proposed

https://github.com/USTC-HIlab/MDNNMD
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Table 3. Comparative Results with state-of-the-art ML models for 5−fold cross vali-
dation on imbalanced data subset configurations (n = 1000). In each column, the best
results are typeset in boldface and the second best results are underlined

Model 50%–50% 25%–75% Δ Prec.

Acc Prec Rec F1 Acc Prec Rec F1

QDA 53.22 53.36 53.88 53.46 53.36 26.50 47.63 33.94 −26.86

K-NN 61.95 73.97 36.68 48.79 72.96 39.55 09.68 14.56 −34.42

LDA 69.52 72.25 63.02 67.26 65.81 36.49 48.86 41.69 −35.76

DT 73.11 73.49 72.78 73.04 71.40 42.00 35.32 38.02 −31.49

NB 74.10 83.48 60.16 69.88 53.36 30.71 68.21 42.28 −52.77

RF 75.96 74.87 78.51 76.50 79.26 71.98 30.71 42.13 −2.89

Ridge 76.82 80.33 71.34 75.47 73.53 47.91 47.17 47.37 −32.42

ET 77.39 77.08 77.93 77.48 78.55 65.69 32.37 42.80 −11.39

Ada Boost 79.39 80.42 77.93 78.94 78.12 59.49 48.30 52.63 −20.93

SVM 79.54 80.61 78.22 79.16 77.83 59.58 50.62 53.58 −21.03

LightGBM 79.83 81.22 77.65 79.30 77.26 57.25 40.38 47.18 −23.97

LR 80.83 82.43 78.51 80.31 80.11 64.03 48.86 55.23 −18.40

GBC 81.26 81.29 81.37 81.30 78.98 63.24 38.63 47.78 −18.05

Proposed 87.00 93.01 89.26 91.09 86.00 91.15 89.93 90.54 −1.86

model has consistent performance (Δ Precision = −1.86) on both the class dis-
tributions, whereas all other models show a significant decrease in performance
(large variation in Δ Precision observed).

3.4 Exp. 03. Quantitative and Qualitative Comparison of Overall
Model Performance

For an in-depth quantitative and qualitative comparison, n = 1000 was taken as
the subset configuration. The proposed model was trained for short and long-
term patient survival prediction following the conventional 80 − 20% train-test
split, with hyperparameters θ = 0.7263 and γ = 2, found experimentally during
model hyperparameters tuning and parametric study (see Exp. 04). The number
of H formed during training was found to be 12. The proposed model is compared
with state-of-the-art ML and deep learning models on the METABRICS trail
data, as shown in Table 2. The obtained results show that the proposed model
outperforms all other ML models by a significant margin (≈ 5.74% improvement
on accuracy, ≈ 9.53% on precision). Moreover, the modal performance is at par
with other deep learning approaches despite training on a limited dataset. It can
be inferred that the proposed model can predict patient survival with comparable
accuracy and higher precision while requiring a relatively small dataset to train.
The primary reason for this is the data-intensive nature of majority of proposed
models, which fail when applied to imbalanced datasets. Moreover, the proposed



Foreseeing Survival Through ‘Fuzzy Intelligence’ 241

model preserves both the contrasting and similar characteristics of each class
sample. This differs from deep learning models that learn mostly the contrasting
features while minimizing a loss function L. The results confirm that ‘fuzzy’ way
is more suited towards imbalanced and limited data.

ffi ffi

ff

ffff

ff

θ θ

Fig. 3. Effect of variation in hyperbox (H) expansion coefficient on A. Number of
hyperbox (H) formed during model training B. Model training time (sec)

3.5 Exp. 04. Parametric Study and Time Complexity Analysis

A parametric study was performed to analyze the effect of the variations of model
hyperparameters i.e., θ and γ. From Fig. 3, we conclude that as θ increases, the
number of hyperbox (H) created during training shows an ‘exponential’ increase
rather than a ‘linear’ one. In contrast, the training time first shows a sharp rise
until θ = 0.2, after which it decreases exponentially. The study quantifies that
the proposed model has an significantly less total training time (≈ 5 s) compared
to other models. However, the test time is comparatively higher (≈ 90 s/sample).

4 Discussion and Conclusions

The present study proposes a de novo approach towards the development of
prognosis models framing the task as an ‘incremental learning’ problem. The
proposed model addresses the problem of limited availability of high-throughput
multi-omics datasets and the high-class imbalance seen in them. The obtained
results establish the model’s effectiveness and quantify that fuzzy classifier-based
models are more suited towards problems where the dataset is highly imbal-
anced or limited, such as developing prognosis models combining multi-omics
data. The proposed model surpasses state-of-the-art ML models significantly.
These results suggest that prediction through ‘fuzzy intelligence’ is a promising
approach towards breast cancer prognosis. In future work, we aim to expand the
model for ovarian cancer, cervical cancer, fallopian tube cancers, etc., among
others caused by BRCA1 and BRCA2 mutations. Future research may also inte-
grate a fourth multi-modal data such as gene methylation, miRNA expression
or pathology image dataset to improve classification performance further.
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