
cAPTured: Neural Reflex Arc-Inspired Fuzzy
Continual Learning for Capturing in Silico

Aptamer-Target Protein Interactions
Aviral Chharia

Department of Mechanical Engineering
Carnegie Mellon University
Pittsburgh, PA 15213, USA
achharia@andrew.cmu.edu

Runjhun Saran
Waterloo Institute of Nanotechnology

University of Waterloo
Waterloo, ON, Canada
rsaran@uwaterloo.ca

Apurva Narayan
Department of Computer Science

Western University
London, ON, Canada

apurva.narayan@uwo.ca

Abstract—Aptamers are oligonucleotides or peptides with
unique binding properties for specific target molecules, and they
have shown great potential in diagnostics, therapeutics, and bio-
sensing. However, the current in vitro SELEX-based method
for discovering new target-selective aptamers is challenging,
time-consuming, and often unsuccessful in finding high-affinity
aptamers. Recently, in silico methods have gained immense
attention. However, since labeled interaction-pair data collection
is expensive and needs highly trained specialists, available data
is sparse. Further, since acquiring positive-class samples is even
more challenging, available datasets showcase high-class imbal-
ance. This makes designing deep learning models incredibly chal-
lenging, as they require a sufficiently large training set and are
biased towards the dominant class. Additionally, current models
cannot be updated in real-time, and end-to-end re-training is
necessary for each new aptamer-target interaction pair discovery.
The present work is the first to address both these challenges. We
present cAPTured, a novel fuzzy continual learning method for
predicting aptamer-target protein interaction pairs in a continual
learning environment. cAPTured continually updates its learned
feature space on a non-stationary interaction-pair data stream.
We performed extensive evaluation studies and experiments to
establish the effectiveness of the proposed approach. cAPTured
outperforms existing methods on the benchmark dataset by a
significant margin.

Index Terms—Continual Learning, Machine Learning, Fuzzy
Classification, Aptamer-Protein interactions

I. INTRODUCTION

A. Background

Aptamers are short single-stranded sequences of RNA [1],
DNA [2], and other oligonucleotides or peptides. First dis-
covered in the 1990s, aptamers have demonstrated significant
promise in diagnostics, therapies, and bio-sensing. Aptamers
have a high potential to serve as superior alternatives to anti-
bodies due to their molecular recognition capability. Compared
to traditional antibodies, aptamers offer numerous advantages:
(1) Aptamers exhibit higher stability at high temperatures.
Upon renaturation, aptamers regain their natural structure and
attach to targets. (2) Aptamers can be screened in vitro using
an artificial library instead of cell lines/ animals required
for antibody screening. (3) After screening, aptamers can be
manufactured on a large scale with high purity by elementary

polymerase-chain reactions. (4) Aptamers’ spatial conforma-
tions allow numerous functional groups addition (compared to
antibodies), giving them ability to bind to specific biomolec-
ular targets [3], including lipids [4], viruses [5], nucleic acids
[6], cytokines [7], ions [8], with high specificity and affinity.

B. Challenges

In industry, aptamers are identified, screened, and selected
in vitro using the iterative process of Systematic Evolution
of Ligands by EXponential enrichment (SELEX) [9], which
consists of several repeated rounds of binding, partition, and
amplification. This experimental “lab-based” method is chal-
lenging, costly, labor-intensive, time-taking (several weeks),
and often fail to find high-affinity aptamers [10, 11]. Therefore,
in-silico methods have come into the limelight in recent years
to develop a simple and cost-efficient computational alternative
for designing a more effective aptamer. However, developing
computational methods still faces many challenges: (1) high
class-imbalance (2) limited data availability (3) models be-
coming irrelevant over very short times as new interactions
pairs are discovered. Due to this, very few models have been
developed in the past decade (five in number).

C. Motivation

Continual Learning is a potential strategy for addressing
these issues. Even though we humans are continually exposed
to new and varied types of vision data, we do not forget the
characteristics of previous objects we have seen. However,
training neural networks in a continual learning setting is a
very challenging task. Despite attempts to imitate the human
brain, it has been observed that models in continual learning
environments are prone to catastrophic forgetting/ interference,
i.e., inability to retain what they previously learned when new
class samples are presented.

D. Contributions

This work is the first to present a continual learning model
for in silico prediction of aptamer-target protein interaction

20
23

 In
te

rn
at

io
na

l J
oi

nt
 C

on
fe

re
nc

e 
on

 N
eu

ra
l N

et
w

or
ks

 (I
JC

N
N

) |
 9

78
-1

-6
65

4-
88

67
-9

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

IJC
N

N
54

54
0.

20
23

.1
01

91
80

9

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on December 14,2023 at 01:08:56 UTC from IEEE Xplore.  Restrictions apply. 



Rev-Comp k-mer Aptamer EncodingPseAAC-based Protein Encoding

….

…

R3 R5

� �

� �

� �

R1

R1

R1

R2

R2

R3 R4

R4

….

….

….R1

R4

R2

R3

R2 R3 R4

� �

RL

RL

RL

RL

R5

R5

R5
AAT
TTTCAC

AACAAA
CAA

1 10

A
A

A

C
C

G

T
T

T………. ……….

AAG
….

TGCTGCCCTTTGGCAAAT

k-mer Aptamer Encoding

AT
TT

AC
CCCA

AA

2 21

A
A

C
C

T
T………. ……….

AG
….

ACGACGGGAAACCGTTTA

��

��

V & W

�	

��

��


�


�

. 

.

MAT. U

General Fuzzy Min -Max Neural Network

. 

.

.

.

��

��

��


�


�

MAT. Z

Hyperbox Containment

Compensation

Hyperbox Overlap

Compensation

��


�


�


�


�


�

MAT. Y


	�

��

��

��

��

��

. 

.

.

.

GRK2 Protein

C13 Aptamer

Feature 

Vector ��

. . . .

. .

��


	�

Classifying Layer 

Neuron

PseAAC

Rev-Comp

k-mer

k-mer

ℒ�

c
la

s
s
e

s

Concat

Fig. 1. Model architecture of cAPTured illustrating GRK2 protein (shown in blue) interacting with C13 aptamer (shown in black).

pairs. We encode aptamers using two different strategies: k-
mer and reverse complement k-mer (revck-mer) frequency.
Amino Acid Composition (AAC) and Pseudo-Amino Acid
Composition (PseAAC) [12] were applied to represent target
information using 24 physicochemical and conformational
properties of proteins. To handle the skewness in data, we ap-
plied the neighborhood cleaning algorithm (NCL) [13]. Next,
neural reflex arc-inspired fuzzy classification is performed.
Further, we also illustrate the model’s ability to train on
limited data in a continual learning environment. The pro-
posed method outperforms the current state-of-the-art (SOTA)
models trained on the same benchmark dataset. The results
indicate that cAPTured helps to identify novel aptamer–protein
interaction pairs and build more-efficient biological insights
into understanding the relationship between aptamers and
target proteins. The contributions of this paper include:

• The present work is the first to eliminate model re-
training for each new aptamer-target protein interaction
pair discovery by formulating the problem as a continual
learning task. Real-time architecture update enables the
model to learn continually. (Section III)

• We propose a de novo neural reflex-arc inspired fuzzy
continual learning method which significantly outper-
forms current SOTA models. A parametric analysis is
also conducted to quantify model hyperparameters which
is important for hyperparameter tuning since there is
no such strategy for high-dimensional feature mappings.
(Section IV-D, IV-E)

• The challenge of limited labeled data availability is
addressed. cAPTured’s ability to attain high classification
accuracy despite being trained on limited data samples,
is demonstrated experimentally. Moreover, unlike conven-
tional models, cAPTured only requires single-pass train-
ing. (Section IV-C). Another unique feature of the model
lies in its robustness to high-class imbalance, demon-

strated through experimental studies. (Section IV-C)

II. RELATED WORKS

A. Conventional Machine Learning (ML) methods

In past years, traditional ML approaches have been used
to develop aptamer-screening methods, due to their strong
learning capacity and versatility. Aptamer-target protein in-
teraction pair prediction was firstly framed by [14] as an in
silico task. Their method was based on Random Forest (RF)
and used nucleotide acid composition (NAC) for encoding
aptamers, while the target proteins were encoded using AAC
and PseAAC [12]. Although somewhat successful, the model
faced class-imbalance problem. This resulted in high predic-
tion accuracy (87.13%) for large/ dominant non-interaction
class and low accuracy (48.28%) for the small sample class,
thus biasing the model towards the dominant class. This
was due to high skewness and limited data samples, since
acquiring positive-class samples is relatively more challenging.
Moreover, with every new aptamer-target protein binding pair
discovery, model re-training was required.

B. Low Performance by Ensemble methods

To deal with this problem, first studies used 3 RFs in
the ensemble to minimize the effect of class imbalance [15].
They used Pseudo k-tuple nucleotide composition (PseKNC)
to encode aptamers and discrete cosine transform (DCT), bi-
gram position-specific scoring matrix (PSSM), and disorder
information (DI) for encoding the target protein. However, the
negative samples of each RF are less in their model due to
train data split, which decreased the accuracy (from 77.4%
to 71.9%) rather than increasing it and thus defeating the
purpose [15]. [16] proposed using 03 support vector machines
(SVMs) in an ensemble to address the class imbalance. They
used NAC and PseKNC for aptamer encoding, and a sparse
autoencoder (SAE) to represent the targets. [17] developed

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on December 14,2023 at 01:08:56 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
NEW APTAMER-TARGET PROTEIN INTERACTION PAIRS OVER THE YEARS

USED IN VARIOUS STUDIES

Year, Methods New interaction pairs over the years
Dataset Samples

2014 [14, 15, 16, 17] Aptamer Base 725 positive, 2175 negative

2021 [18]
Aptamer Base,
Aptagen [19] 850 positive, 2554 negative

a web server to predict aptamer-target protein interactions
using an integrated framework AdaBoost and RF. Aptamers
were represented by NAC, PseKNC, and normalized Moreau-
Broto auto-correlation coefficient (NMBAC). However, pro-
teins were characterized by AAC, PseAAC, grouped amino-
acid composition, C/T/D composition, and sequence order-
coupling number (SOC). Although these methods have gen-
erated good results, they had low accuracy and MCC scores
that have restricted their wide use.

C. Failure of Deep Learning Models

Recently proposed, AptaNet [18] used a multi-layered per-
ceptron (MLP) model, and applied NCL to address the class
imbalance. AptaNet depicted an oscillation in loss and accu-
racy, confirming that the available data is less for developing
a deep learning (DL) model. The availability of a limited
number of training samples affects the development of DL
models, since they are data-intensive and require a large
number of training samples to tune their parameters. Thus, DL
model design for aptamer-target protein interaction prediction
is incredibly challenging and tends to overfit. Second, current
models face the challenge of ‘continuity’. All proposed ap-
proaches presume a ‘closed-world assumption,’ due to which
models become outdated frequently and need to be re-trained
from scratch for every new aptamer discovery. Table I confirms
the increase in new interaction pair data over the recent years.

III. PROPOSED METHODOLOGY

A. Problem Formulation

Aptamer-target protein binding can be described in two
distinct groups: ‘bound’ and ‘unbound’ sites. Therefore, the
problem can be framed as follows:

f(x, y) =

{
1 if aptamer a binds to target t
−1 otherwise

Here, x represents target t, and y for an aptamer a.

B. Aptamer and target Protein Sequence Encoding

In this study, we have used k-mer and revck-mer to encode
aptamer sequences. For encoding target protein sequences, we
have utilized AAC (Amino Acid Composition) and PseAAC
(Pseudo Amino Acid Composition) [12, 20]. Complete expla-
nation of both encoding techniques have been given in great
detail in Appendix A and B.

C. Feature Selection

In this study, 24 physicochemical and biochemical prop-
erties of amino acids are used. This includes hydrophobic-
ity, hydrophilicity, mass, polarity, molecular weight, melting
point, transfer-free energy, buri-ability, bulkiness, solvation
free energy, relative mutability, residue volume, volume, amino
acid distribution, hydration number, iso-electric point, com-
pressibility, chromatographic index, unfolding entropy change,
unfolding enthalpy, unfolding Gibbs free energy change power
to beat the N terminal, C terminal and middle of alpha
helix. These 24 properties were retrieved from [21, 22]. To
generate protein characteristics, the iFeature1 package was
used [23]. Next, RF-based feature selection was performed
to select the most important features statistically. RF ranks all
features based on the improvement of node purity to select the
important features.

D. Undersampling for targetting class imbalance

Acquiring positive-class labeled aptamer-target protein in-
teraction pairs is highly challenging and costly. Thus, the
available datasets have limited training samples and a high bias
towards the negative class. This makes conventional DL model
design incredibly challenging as they require a large training
set and would over-fit or be biased towards the dominant class.

The proposed model design is capable of learning on limited
data. The architectural reason for the same has been explained
in detail in the following section. Further, since the proposed
model can learn on restricted data, we use under-sampling
[24] to balance the dataset by reducing the majority class
size with replacement. Here, Wilson’s edited nearest neighbor
(ENN) rules [25] are used to identify noisy data and reduce the
majority class by removing them. It is to be noted that only
those instances that differ from at least 2 of their 3 nearest
neighbors are removed. Furthermore, neighborhood cleaning
is used to intensify the size reduction of the dominant class.

E. Neural Network-based Feature Vector Reduction

The features from the formed 640-dimensional feature vec-
tor are reduced to 32-dimensional feature vector representation
using a feature reduction network. This is primarily done to
reduce the dimensionality since the number of features formed
surpasses the number of training samples. This reduces the
computational time as the dominant features are extracted and
redundant features are discarded. For this, a neural network
was trained and used as a feature extractor. The network
architecture is depicted in Figure 1. The network consists of
5 layers fully-connected dense layers that reduce the feature
vector size from 208 to 32. ReLU non-linearity (ReLU(x)
= x if x ≥ 0, else = 0 if x < 0) was used as the
activation function. To prevent overfitting on the training
dataset, a dropout of 0.3 was given after each layer. In the
end, a sigmoid activation (Sigmoid(x) = 1

1+e−x ) was used
with the output layer. ‘Binary cross-entropy’ loss function

1iFeature python implementation is available at
https://github.com/Superzchen/iFeature/

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on December 14,2023 at 01:08:56 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1: Training algorithm

Input: hyper-parameters θ, γ, Trained FEN , New Exper-
imental Data (ah, Ci)
Output: Updated model M

1: procedure: TRAIN(θ, γ, FEN , (ah, Ci))
2: Load FEN , M ▷ Pre-trained FEN and

Current model
3: for i in num samples do
4: ah ← FEN(ah)
5: if bj accommodates ah ▷ H Isolation,

Contraction Test
6: expand bj
7: if bj is isolated ▷ H Isolation

Condition
8: continue
9: else

10: if bj is contained ▷ H Containment
Condition

11: add CCN
12: else
13: add OCN
14: continue
15: else
16: Create H with V = W = ah
17: end for
18: return M ▷ Updated model
19: end procedure

(Lc =
−1
n

∑
x

∑
t[ylna+(1− y)ln(1−a)]) was used to train

the model. The model was trained for a total of 260 epochs.
Two model callbacks, model checkpoint and reduce learning
rate on plateau, were used to help in the training process. The
model checkpoint would save the best performing model after
each epoch, while the reduce learning rate on plateau, which
had a patience value of 10 and a reduction factor of 0.1, would
reduce the learning rate by a factor of 0.1 if the accuracy
did not increase for 3 consecutive epochs. Here, the final
classification layer is discarded, and the remaining network
is used as a feature extractor. The final dataset denoted by
S, consists of a labeled stream of samples, i.e., S0, S1, . . .,
where S(t) = (a

(t)
j , C

(t)
j )

N

j=1
, where t = 0, ...,K, (K+1), ..., L.

F. Point Hyperbox Creation

The 32−dimensional feature vector representation for each
sample is sent to the classifying neurons (CLN ), which
use min-max hyperboxes to classify the learnt data. In this
space, discontinuous decision boundaries in the form of
‘hyperboxes (H)’ are created during model training [26].
Defining this decision boundary requires a min coordinate
Vj = (vj1, vj2, ..., vjn), and a max coordinate Wj =
(wj1, wj2, ..., wjn) [27]. However, in order to reduce the
model hyperparameters, a single parameter, i.e., θ ∈ (0, 1) that
represents the hyperbox size is defined. During training, for the
first input, a point H is created. Subsequently, the model tries

to accommodate remaining training samples {ah, Ci} in the
previously constructed hyperboxes belonging to the same class
Ci, provided the Hsize does not exceeds a specified maximum
limit (‘θ’). A new H node is created in the CLN section, at
times when the model encounters a training sample that does
not belong to the classes it has seen so far, i.e., for a new
training sample {ah, Ci}, a hyperbox {bj , Cj} is found such
that Cj = Ci or Cj = Co which has the highest membership
value and satisfying [27]-

(1) θmax ≥
1

n

n∑
i=1

(max(wji, ahi)−min(vji, ahi)) (1)

(2) bj is not associated with any compensation node (2)
(3) if Ci = C0 or Cj = C0 then µj > 0, (3)

where µj is membership of bj . The coordinates of bj are
adjusted, as,

V new
ji = min(V old

ji , ahi), (4)

Wnew
ji = max(W old

ji , ahi), where i = 1, 2, ..., n (5)

and if Cj = C0 and Ci ̸= C0 then Cj = Ci (6)

Following, the min-max coordinates of bj are adjusted such
that, Vnew

ji = min(Vold
ji , ahi); Wnew

ji = max(Wold
ji , ahi),

where i = 1, 2, ..., n, and third, if Cj = C0 and Ci ̸= C0 then
Cj = Ci. If no suitable bj is present then a novel hyperbox
H for class Ci is created with Vj = Wj = ah; i.e., a point
hyperbox is created.

In CLNs, the neuron bj represents hyperbox fuzzy set i.e.,
= Ah,Vj ,Wj , f(Ah,Vj ,Wj) ∀ (Ah ∈ In) [27]. The input
nodes and hyperbox nodes are coupled in the intermediate
layer of the classifier. These connections represent the n−
dimensional hyperbox fuzzy set’s min-max coordinates, i.e., V
andW . The neurons in the intermediate layer are dynamically
produced during training. Connection between the hyperbox
node bj to a class node Cj is represented by matrix U , where,
uij = 1 if bj ∈ Cj else uij = 0. In CLN nodes, to compute
the class memberships, activation function by [28] is used to
assign membership value = 1 when the test sample falls within
the hyperbox. When the test sample is located outside H, the
model determines the membership-value based on its distance
from H’s extreme coordinates. More fuzziness in classification
is achieved by increasing fuzziness control parameter (γ),
whereas crisp classification is achieved by reducing it.

G. Neural Reflex Arc-Inspired Fuzzy Continual Learning

Since high-dimensional feature space contains all aptamer-
target protein feature characteristics, hyperbox overlap is
a possibility. Overlap Compensation Neurons (OCN ) and
Containment Compensation Neurons (CCN ) are biologically-
inspired error minimization sections which activate only when
an instance of H overlap/ containment is found [29].

H. Decision Boundary Overlap

The Reflex mechanism is naturally inspired by the human
reflex mechanism, which automatically takes control of the
body in dangerous situations [29]. It contains the overlap

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on December 14,2023 at 01:08:56 UTC from IEEE Xplore.  Restrictions apply. 



compensation neurons (OCN ) and containment compensation
neurons (CCN ), which assists in achieving more explainable
class memberships with high accuracy. When a situation of
hyperbox overlap and confinement is found, these neurons be-
come active. A hyperbox (H) of size equal to the overlapping
space between two hyperboxes belonging to distinct classes is
represented by OCN . Only if the test data is within the overlap
space does the OCN section become active. It produces
two compensation outputs, one for each overlapping class.
The CCN section, which solves the hyperbox containment
problem, depicts a hyperbox (H) with the same size as the
overlapping space between the two classes. When a test sample
enters the overlapping space, CCN is activated [29]. To see if
there is any overlap, the Hyperbox overlap test is employed.
δold starts with a value of 1.
C1: vji < vki < wji < wki then, δnew = min(wji−vki, δold)
C2: vki < vji < wki < wji then, δnew = min(wki−vji, δold)
C3: vji < vki ≤ wki < wji then, δnew = min(min(wki −
vji, wji − vki), δ

old)
C4: vki < vji ≤ wji < wki then, δnew = min(min(wki −
vji, wji − vki), δ

old)
If overlaps exist, i.e., one of the above conditions is true,

and (δnew − δold) > 0, then, ∆ = i else ∆ = −1.
The contraction test is used to check for hyperbox contrac-

tion, i.e., if there is overlap and it is minimal along the ∆
dimension, the hyperboxes are contracted using the provided
conditions:
C1: vj∆ < vk∆ < wj∆ < wk∆ then, vnewk∆ = wnew

j∆ =
wold

j∆ +vold
k∆

2

C2: vk∆ < vj∆ < wk∆ < wj∆ then, vnewk∆ = wnew
j∆ =

wold
k∆+vold

j∆

2

C3: vk∆ < vj∆ ≤ wj∆ < wk∆ and wk∆− vj∆ < wj∆− vk∆
then vnewj∆ = wold

k∆ else wnew
j∆ = voldk∆

C4: vj∆ < vk∆ ≤ wk∆ < wj∆ and wk∆− vj∆ < wj∆− vk∆
then wnew

j∆ = voldk∆ else vnewj∆ = wold
k∆

I. Decision Boundary Containment

The hyperbox node is dynamically formed in the reflex
section’s intermediate layer if a condition of overlap/ partial or
complete containment of hyperbox (H) is observed [29]. Over-
lap/ containment between a labelled hyperbox Bj ∈ Ci∀i > 0
and an unlabeled hyperbox Bk ∈ Ci∀i = 0 is permitted and
does not result in the creation of any OCN or CCN nodes.
The total number of classes learnt by the model is represented
by the number of output layer nodes in the CLN section. The
final membership value for the ith class node is computed as
µi ← Ci +Oi, where Ci and Oi are the membership and the
compensation values computed for the ith class, respectively.
The reflex mechanism uses the OCN and CCN neurons to
create compensatory outputs, unlike fuzzy min-max neural
networks (FMNNs), which constrict a hyperbox in the event
of overlaps [27].

The hyperbox isolation condition is checked, i.e., if (Vki <
Wki < Vji < Wji) or (Vji < Wji < Vki < Wki) is

true for any i ∈ 1, ..., n, then, (bk, bj) are isolated [27].
The feature space must be verified for containment if the
isolation condition does not hold. The hyperbox confinement
condition is used to detect probable containment situations
[29]. According to it, if (Vki < Vji < Wji < Wji) or
(Vji < Vki < Wki < Wji) is true for any i ∈ 1, ..., n,
then hyperboxes are contained and a CCN node is formed
dynamically. A OCN node is formed if hyperboxes are not
contained.

IV. EXPERIMENTS AND RESULTS

A. Datasets

We evaluate our method cAPTured on the benchmark dataset
by [18], which consists of all currently discovered aptamer-
target protein interaction pairs from two popular databases:
Aptagen2 and Aptamer Base [19], containing 554 (477 RNA/
DNA aptamers and 241 target proteins) and 1638 (1381
RNA/ DNA aptamers and 211 target proteins) interaction
entries respectively. Since both databases contain the target
protein’s identifier names, the sequence of each target protein
was obtained from UniProtKB/ Swiss-Prot3. Aptagen has 269
interactions with the 241 protein targets out of the 477 ap-
tamers present. As a result, the 269 pairs are regarded positive
samples. Similarly, only 725 interactions with 164 proteins
were found among 1381 aptamers for Aptamer Base; hence
725 pairs are deemed to be positive samples. Thus 850 pairs
targeting 452 proteins were obtained. Negative pair instances
were created using random pairs that had no overlap with
the positive examples. Finally, the total number of instances
was 3404, which contained 850 positive and 2554 negative
instances.

B. Experimental Details

We briefly summarize the implementation details in this
section.

Setup. The dataset was divided into the standard 80-20%
train-test set. The normalisation method was ‘zscore’, com-
puted as z = (x − u)/s. All methods were implemented in
the python programming language using Python 3.6. When
training baselines for comparison, the same parameter settings
and dataset was used to ensure a fair evaluation. The results
obtained after 5-fold cross-validation are reported in this study.

Evaluation Metrics. We followed confusion matrix-based
metrics to evaluate model performance. This includes Acc =(

TN+TP
TN+FN+TP+FP

)
, P rec =

(
TP

TP+FP

)
, Rec =

(
TP

TP+FN

)
, F1 =

2
(
Prec×Rec
Prec+Rec

)
. Since in case of class imbalance, accuracy

may not be a good evaluation metric alone, we also es-
timated Matthew’s Correlation Coefficient, i.e., MCC =

TP×TP−FP×FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

.
Platform. We carried out the studies on an NVIDIA K80

GPU workstation with 12GB RAM with Tensorflow [30] as
a backend. The implementation is available with the supple-
mentary material and will be open-sourced.

2Aptagen dataset is available at https://www.aptagen.com/
3UniProtKB/ Swiss-Prot datasets are available at:

https://www.uniprot.org/uniprot/

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on December 14,2023 at 01:08:56 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
RESULTS OF THE CONTINUAL LEARNING ABILITY OF THE PROPOSED MODEL ON APTAMER-TARGET PROTEIN BINDING PROBLEM. HERE,

HYPERPARAMETERS ARE θ = 0.50, γ = 2. HERE 1: IS THE BINDING PAIR CLASS AND 2: REPRESENTS NON-BINDING PAIR.

R1 (@50) R2 (@100) R3 (@150) R4 (@200) R5 (@250)
Prec Rec F1 Sup Prec Rec F1 Sup Prec Rec F1 Sup Prec Rec F1 Sup Prec Rec F1 Sup

1 1.00 1.00 1.00 5 1.00 1.00 1.00 7 0.93 1.00 0.97 14 0.86 1.00 0.93 19 0.85 1.00 0.92 23
2 1.00 1.00 1.00 5 1.00 1.00 1.00 13 1.00 0.94 0.97 16 1.00 0.86 0.92 21 1.00 0.85 0.92 27

ACC 1.00 10 1.00 20 0.97 30 0.93 40 0.92 50
Macro AVG 1.00 1.00 1.00 10 1.00 1.00 1.00 20 0.97 0.97 0.97 30 0.93 0.93 0.92 40 0.93 0.93 0.92 50

Weighted AVG 1.00 1.00 1.00 10 1.00 1.00 1.00 20 0.97 0.97 0.97 30 0.94 0.93 0.92 40 0.93 0.92 0.92 50

TABLE III
APTAMER-TARGET PROTEIN INTERACTION PREDICTION RESULTS FOR

MODEL TRAINED ON LIMITED DATA SUBSET CONFIGURATION.

S1 (@100) S2 (@200) S3 (@300)
Prec Rec F1 Sup Prec Rec F1 Sup Prec Rec F1 Sup

1 0.89 0.89 0.89 9 0.93 0.87 0.90 15 0.95 0.91 0.93 22
2 0.91 0.91 0.91 11 0.89 0.94 0.91 17 0.94 0.97 0.95 30

Acc 0.90 20 0.91 32 0.94 52
Mac Avg 0.90 0.90 0.90 20 0.91 0.90 0.91 32 0.94 0.94 0.94 52
Wt Avg 0.90 0.90 0.90 20 0.91 0.91 0.91 32 0.94 0.94 0.94 52

C. Evaluation Protocol

We evaluate the performance of cAPTured method under
three circumstances – (a) in an continual learning environ-
ment, (b) in a limited data environment, and (c) on the full
benchmark dataset. These 03 evaluating situations answer –
(a) how well the model adapts to novel data samples, (b) how
well the model is able to preserve the accuracy (mitigating
catastrophic interference) of previous data embeddings, and
(c) how well the model performs in limited data availability,
(d) how well the model performs compared to present SOTA
methods on the benchmark dataset. The baseline models were
trained on the benchmark datasets.

1) Evaluation in Continual Learning Environment: In the
first experiment, the model’s continual learning ability was
evaluated. The model was trained on 1164 samples (80%
samples), while the remaining 292 samples (20% samples)
were input as an continual-data stream (R1, R2, R3, R4, R5
each containing 50 samples) during testing for the model to
learn in a continual learning setting. It is to be noted that the
samples in the continual learning (lab setting) were unseen
previously by the model and were not used during training
the classifying layer neuron (CLN ) or the feature extraction
networks. The results obtained are shown in Table II. The
experiment demonstrates the model’s ability and consistency
of performance in predicting aptamer-target protein interaction
pairs while updating its feature space in real-time over new
aptamers that are being continuously discovered. Moreover,
since cAPTured is the first continual learning method for
Aptamer-target protein interaction prediction, it serves as the
baseline for continual learning tasks in the domain. We also
discuss the hyperparameters chosen during these experiments.

From the obtained results, we can conclude that the model
has consistent performance, and it overcomes catastrophic
forgetting.

2) Evaluation in Limited Data Environment: The limited
availability of aptamer-target protein interaction datasets is
the major challenge in developing in situ methods for their
screening. Currently only 2 databases exists – Aptamer Base
and Aptagen, both of which we have utilized in our study.
Since, physicochemical properties (e.g., hydrophilicity, hy-
drophobicity, average accessible surface area, and polarity) and
biochemical contacts (residues contacts, atom contacts, salt
bridges, and hydrogen bonds) affect protein interactions, we
have used 32 structure-based and sequence-based properties
from protein sequences. Most previous studies [14, 15, 16,
17] have not utilized these features. In the second experiment,
the model was trained on limited data subset configuration S1,
S2 and S3 which had n = 100, n = 200 and n = 300 samples
respectively. Here ‘n’ represents the number of samples taken.
The model’s classification ability was tested on each subset
configuration to establish the generalizability of the model’s
ability to make predictions on limited subsets of data. Table III
shows the prediction performance of the model and compare
the obtained results with varying data subset configurations.

3) Evaluation on Benchmark dataset: In contrast to the
previous experiment, in which the model’s classification per-
formance was assessed on a limited data subset, here we
analyze the model on the entire benchmark dataset. The
classification results are presented in Table IV. We compare
our results with all existing aptamer-target protein interaction
prediction methods. While these methods are based on a
‘closed-world assumption’, we propose a continual learning
model and significantly outperform them ( 3%).

D. Analysis and Performance Comparison

For encoding aptamer sequences, we relied on using k-mer
frequency due to its simplicity and wide-acceptance. k-mer
encodes more sequence information compared to other encod-
ing techniques. Extending the same for aptamers has yielded
successful results. Similarly, we used PseAAC to represent
target-protein sequences. We did not use the commonly used
AAC strategy since it leads to a loss in protein-sequence
information. Moreover, in previous methods, PseAAC has
been utilized and had successful outcomes. Therefore, we used
PseAAC for representing protein target sequences.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on December 14,2023 at 01:08:56 UTC from IEEE Xplore.  Restrictions apply. 



TABLE IV
COMPARISON OF OBTAINED APTAMER-TARGET PROTEIN INTERACTION PREDICTION WITH BASELINES AND STATE-OF-THE-ART METHODS ON

BENCHMARK DATA. HERE, “A” IS THE DATASET BY [14] AND “A+B” IS THE BENCHMARK DATASET BY [18]. HERE, IDE: IMBALANCED DATASET
ENVIRONMENT, LDE: LIMITED DATA ENVIRONMENT, CLE: CONTINUAL LEARNING ENVIRONMENT.

Methods Dataset
Evaluation Metrics

IDE LDE CLE
Feature encoding

Predictor
ACC Prec Rec F1 MCC Aptamer encoding Protein encoding

Baseline

Shallow Net A+B 0.687 0.382 0.212 0.272 0.101 - - ✗ k-mer, revck-mer PseAAC -
K-NN A+B 0.601 0.380 0.136 0.200 0.011 - - ✗ k-mer, revck-mer PseAAC -

RF A+B 0.795 0.396 0.240 0.291 0.196 - - ✗ k-mer, revck-mer PseAAC -
SVM A+B 0.548 0.390 0.032 0.058 -0.020 - - ✗ k-mer, revck-mer PseAAC -

SOTA

[14] A 0.774 - 0.483 - 0.372 ✗ ✗ ✗ NAC AAC, PseAAC RF
[15] A 0.719 - 0.738 - 0.398 ✗ ✗ ✗ PseKNC DCT, DI, PSSM 3 RF ens.
[16] A 0.745 - 0.773 - 0.450 ✔ ✗ ✗ AAC, PseKNC SAE 3 SVM ens.
[31] A 0.819 - 0.287 - 0.467 ✗ ✗ ✗ PseKNC TPC Monte Carlo Tree

[17] A 0.842 - 0.641 0.664 0.557 ✔ ✗ ✗
AAC, PseAAC, NAC, PseKNC,

Adaboost+RF
C/T/D, SOC NMBAC

[18] A+B 0.913 0.909 0.890 0.899 0.824 ✔ ✗ ✗ k-mer, revck-mer PseAAC MLP
Ours cAPTureda A+B 0.942 0.940 0.940 0.940 0.884 ✔ ✔ ✔ k-mer, revck-mer PseAAC -

aHyper-parameters θ = 0.25, γ = 2.

Table IV summarizes the evaluation results of all baselines
and compares cAPTured to existing state-of-the-art methods.
From Table IV, we can observe that:

(1) Past approaches [16] have mainly used ML models
in ensemble as classifiers. Since number of features (i.e.,
dimensionality of feature vectors) far exceeds the number of
training samples, most ML models (including SVM, RF) fails
to achieve the required performance levels. Using SVM does
not yield high accuracy since SVM is not convenient on noisy
dataset where target classes are overlapping. Further, SVM has
low explainability since for classification above and below the
hyperplane, there is no probabilistic explanation.

(2) Deep learning (DL) approaches are ineffective due to
limited data availability. [18] proposed AptaNet based on DL
based multi-layered perceptron. However, study reported an
oscillation in loss and accuracy. This was due to the limited
number of training samples, since DL models require large
volumes of data. To address this issue, cAPTured uses shape-
morphing architecture which makes it effective in achieving
performance even on limited datasets as demonstrated through
the set of experiments.

E. Further Analysis and Insights

1) Impact of the Hyperbox Expansion Coefficient (θ):
To assess the influence of model parameters, an in-depth
parametric study was performed where the effect that vari-
ations in hyperbox expansion coefficient (θ) and fuzziness
control parameter (γ) have on (1) the number of hyperboxes
(H) formed during training, and (2) the model training time
(sec) were analyzed. Obtained results indicate that, as the
hyperbox expansion coefficient (θ) increases, the number of
hyperboxes formed during training increases in exponentially
(rather than in a linear manner) [32, 33]. Figure 2(a) depicts
this graphically.

2) Temporal Complexity Analysis: In addition to the para-
metric study, a temporal complexity analysis is performed. The

Fig. 2. Plots obtained from the parametric study and temporal complexity
analysis on the benchmark dataset (a) Effect of hyperbox expansion coefficient
(θ) on number of hyperboxes formed (b) Effect of hyperbox expansion
coefficient (θ) and fuzziness control parameter (γ) on the sample testing
time (c) Effect of hyperbox expansion coefficient (θ) and fuzziness control
parameter (γ) on model training time

sample testing time (sec) for the prediction task is plotted
graphically by adjusting the hyperparameters. The experiment
is performed several times, varying the hyperparameters to
determine the total model training time. The obtained study
indicates that the model’s training time on the overall dataset
is comparable (i.e., 0.2 to 2 sec) to the sample test time (which
ranges from 0.01 to 0.1 sec). Usually, such a substantial gap
is not found in low-dimensional data categorization tasks [34-
35]. As shown in Figure 2(b), the model training time is higher
until 0.2, after which it reduces ‘exponentially’ for varying γ.

3) Visualization of post-embedding and final configuration:
T-SNE plots representing feature spaces before and after the

Fig. 3. t-SNE plots: (a) Before (b) After. From the plot, it can be inferred
that our method aligns both classes by minimizing the gap.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on December 14,2023 at 01:08:56 UTC from IEEE Xplore.  Restrictions apply. 



changes brought about by our training methodology are shown
in Figure 3. The t-SNE plots give a visual of how the
classification task is performed by the proposed model. As
evident from Figure 3, during incremental setup, cAPTured
refines weights efficiently to push the classifier weights away
from uncertain areas, resulting in better decision boundary.

V. CONCLUSION AND FUTURE WORK

Interactions between aptamers and proteins are significant
in physiological activities as well as molecular identification.
In this paper, we propose a fuzzy continual learning method
called cAPTured, which combines continual learning as a
novel bioinformatics tool for screening aptamer-target protein
interactions while saving on training data. cAPTured first
performs feature encoding (1) k-mer and revck-mer based
aptamer-seq encoding, (2) AAC and PseAAC based target
protein-seq encoding, and then fuses the encoded features and
performs feature embedding in a low-dimensional latent space,
preserving more statistically significant features and finally,
screens for potential aptamer-target protein interaction pairs in
a fuzzy continual learning environment. Experimental results
on real interaction data indicate the superiority of cAPTured
both over baselines and state-of-the-art methods. In addition,
the performance of cAPTured on both limited data subset
configuration and continual learning environment demonstrate
that cAPTured is effective, robust and prevents the model
from becoming outdated with time. Future work includes
extending the proposed algorithm to assign aptamer sequences
to their corresponding families on the basis of their conserved
primary sequences and secondary structures [36]. Secondly,
fuzzy continual learning based bioinformatics methods can be
developed for other domains like EEG [37], Brain-Computer
Interface [38], visual aids [39], etc.

REFERENCES

[1] A. D. Ellington and J. W. Szostak, “In vitro selection of RNA molecules
that bind specific ligands,” Nature, vol. 346, no. 6287, pp. 818–822,
1990, doi: 10.1038/346818a0.

[2] D. L. Robertson and G. F. Joyce, “Selection in vitro of an RNA enzyme
that specifically cleaves single-stranded DNA,” Nature, vol. 344, no.
6265, pp. 467–468, 1990, doi: 10.1038/344467a0.

[3] A. B. Iliuk, L. Hu, and W. A. Tao, “Aptamer in bioanalytical ap-
plications,” Anal. Chem., vol. 83, no. 12, pp. 4440–4452, 2011, doi:
10.1021/ac201057w.

[4] M. Ashrafuzzaman, “Aptamers as both drugs and drug-carriers,” Biomed
Res. Int., vol. 2014, p. 697923, 2014, doi: 10.1155/2014/697923.

[5] J. M. Binning et al., “Development of RNA aptamers targeting Ebola
virus VP35,” Biochemistry, vol. 52, no. 47, pp. 8406–8419, 2013, doi:
10.1021/bi400704d.

[6] M. E. Jaax et al., “Complex formation with nucleic acids and aptamers
alters the antigenic properties of platelet factor 4,” Blood, vol. 122, no.
2, pp. 272–281, 2013, doi: 10.1182/blood-2013-01-478966.

[7] P. Wang, Y. Yang, H. Hong, Y. Zhang, W. Cai, and D. Fang, “Aptamers
as therapeutics in cardiovascular diseases,” Curr. Med. Chem., vol. 18,
no. 27, pp. 4169–4174, 2011, doi: 10.2174/092986711797189673.

[8] T. Tŏpala et al., “New sulfonamide complexes with essential metal
ions [Cu (II), Co (II), Ni (II) and Zn (II)]. Effect of the geometry
and the metal ion on DNA binding and nuclease activity. BSA protein
interaction,” J. Inorg. Biochem., vol. 202, no. 110823, p. 110823, 2020,
doi: 10.1016/j.jinorgbio.2019.110823.

[9] C. Tuerk and L. Gold, “Systematic evolution of ligands by expo-
nential enrichment: RNA ligands to bacteriophage T4 DNA poly-
merase,” Science, vol. 249, no. 4968, pp. 505–510, 1990, doi:
10.1126/science.2200121.

[10] M. Flamme, L. K. McKenzie, I. Sarac, and M. Hollenstein, “Chemical
methods for the modification of RNA,” Methods, vol. 161, pp. 64–82,
2019, doi: 10.1016/j.ymeth.2019.03.018.

[11] C. Zhu, G. Yang, M. Ghulam, L. Li, and F. Qu, “Evolution of
multi-functional capillary electrophoresis for high-efficiency selection
of aptamers,” Biotechnol. Adv., vol. 37, no. 8, p. 107432, 2019, doi:
10.1016/j.biotechadv.2019.107432.

[12] Y.-S. Ding, T.-L. Zhang, and K.-C. Chou, “Prediction of protein structure
classes with pseudo amino acid composition and fuzzy support vector
machine network,” Protein Pept. Lett., vol. 14, no. 8, pp. 811–815, 2007,
doi: 10.2174/092986607781483778.

[13] J. Laurikkala, “Improving identification of difficult small classes by bal-
ancing class distribution,” in Artificial Intelligence in Medicine, Berlin,
Heidelberg: Springer Berlin Heidelberg, 2001, pp. 63-66, doi:10.1007/3-
540-48229-6 9

[14] B.-Q. Li, Y.-C. Zhang, G.-H. Huang, W.-R. Cui, N. Zhang, and Y.-D.
Cai, “Prediction of aptamer-target interacting pairs with pseudo-amino
acid composition,” PLoS One, vol. 9, no. 1, p. e86729, 2014, doi:
10.1371/journal.pone.0086729.

[15] L. Zhang, C. Zhang, R. Gao, R. Yang, and Q. Song, “Prediction of
aptamer-protein interacting pairs using an ensemble classifier in combi-
nation with various protein sequence attributes,” BMC Bioinformatics,
vol. 17, no. 1, p. 225, 2016, doi: 10.1186/s12859-016-1087-5.

[16] Q. Yang, C. Jia, and T. Li, “Prediction of aptamer-protein inter-
acting pairs based on sparse autoencoder feature extraction and an
ensemble classifier,” Math. Biosci., vol. 311, pp. 103–108, 2019, doi:
10.1016/j.mbs.2019.01.009.

[17] J. Li, X. Ma, X. Li, and J. Gu, “PPAI: a web server for predicting
protein-aptamer interactions,” BMC Bioinformatics, vol. 21, no. 1, p.
236, 2020, doi: 10.1186/s12859-020-03574-7.

[18] N. Emami and R. Ferdousi, “AptaNet as a deep learning approach for
aptamer-protein interaction prediction,” Sci. Rep., vol. 11, no. 1, p. 6074,
2021, doi: 10.1038/s41598-021-85629-0.

[19] J. Cruz-Toledo et al., “Aptamer Base: a collaborative knowledge base
to describe aptamers and SELEX experiments,” Database (Oxford), vol.
2012, p. bas006, 2012, doi: 10.1093/database/bas006.

[20] B. Liu, F. Liu, L. Fang, X. Wang, and K.-C. Chou, “repDNA: a Python
package to generate various modes of feature vectors for DNA sequences
by incorporating user-defined physicochemical properties and sequence-
order effects,” Bioinformatics, vol. 31, no. 8, pp. 1307–1309, 2015, doi:
10.1093/bioinformatics/btu820.

[21] S. Kawashima, P. Pokarowski, M. Pokarowska, A. Kolinski, T.
Katayama, and M. Kanehisa, “AAindex: amino acid index database,
progress report 2008,” Nucleic Acids Res., vol. 36, no. Database issue,
pp. D202-5, 2008, doi: 10.1093/nar/gkm998.

[22] M. M. Gromiha, “A statistical model for predicting protein folding rates
from amino acid sequence with structural class information,” J. Chem.
Inf. Model., vol. 45, no. 2, pp. 494–501, 2005, doi: 10.1021/ci049757q.

[23] Z. Chen et al., “iFeature: a Python package and web server for features
extraction and selection from protein and peptide sequences,” Bioinfor-
matics, vol. 34, no. 14, pp. 2499–2502, 2018, doi: 10.1093/bioinformat-
ics/bty140.

[24] X.-Y. Liu, J. Wu, and Z.-H. Zhou, “Exploratory undersampling for class-
imbalance learning,” IEEE Trans. Syst. Man Cybern. B Cybern., vol. 39,
no. 2, pp. 539–550, 2009, doi: 10.1109/TSMCB.2008.2007853.

[25] D. L. Wilson, “Asymptotic properties of nearest neighbor rules using
edited data,” IEEE Trans. Syst. Man Cybern., vol. SMC-2, no. 3, pp.
408–421, 1972, doi: 10.1109/tsmc.1972.4309137.

[26] B. Alpern and L. Carter, “The hyperbox,” in Proceeding Visualization
’91, 2002, pp. 133–139, doi: 10.1109/VISUAL.1991.175790

[27] P. K. Simpson, “Fuzzy min-max neural networks. I. Classification,”
IEEE Trans. Neural Netw., vol. 3, no. 5, pp. 776–786, 1992, doi:
10.1109/72.159066.

[28] B. Gabrys and A. Bargiela, “General fuzzy min-max neural network for
clustering and classification,” IEEE Trans. Neural Netw., vol. 11, no. 3,
pp. 769–783, 2000, doi: 10.1109/72.846747.

[29] A. V. Nandedkar and P. K. Biswas, “A General Reflex Fuzzy Min-Max
Neural Network,” Engineering Letters, vol. 14, no. 1, pp. 195–205, 2007.

[30] M. Abadi et al., “TensorFlow: Large-scale machine learning on hetero-
geneous distributed systems,” 2016, doi: 10.48550/ARXIV.1603.04467.

[31] G. Lee, G. H. Jang, H. Y. Kang, and G. Song, “Predicting aptamer
sequences that interact with target proteins using an aptamer-protein in-
teraction classifier and a Monte Carlo tree search approach,” PLoS One,
vol. 16, no. 6, p. e0253760, 2021, doi: 10.1371/journal.pone.0253760.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on December 14,2023 at 01:08:56 UTC from IEEE Xplore.  Restrictions apply. 



[32] A. Chharia and N. Kumar, “Foreseeing survival through ‘fuzzy intelli-
gence’: A cognitively-inspired incremental learning based de novo model
for breast cancer prognosis by multi-omics data fusion,” in Predictive
Intelligence in Medicine, Cham: Springer International Publishing, 2021,
pp. 231–242, doi: 10.1007/978-3-030-87602-9 22.

[33] A. Chharia and A. Narayan, “A novel fuzzy approach towards in silico
B-cell epitope identification inducing antigen-specific immune response
for Vaccine Design,” in 2021 IEEE 21st International Conference on
Bioinformatics and Bioengineering (BIBE), IEEE, 2021, pp. 1–6, doi:
10.1109/BIBE52308.2021.9635292.

[34] A. Chharia, R. Upadhyay, and V. Kumar, “Novel fuzzy approach
to Antimicrobial Peptide Activity Prediction: A tale of limited and
imbalanced data that models won’t hear,” 2021. In Proceedings of the
NeurIPS 2021 AI for Science Workshop, Vancouver, BC, Canada, 13
December 2021, https://openreview.net/pdf?id=x0tzOYvapDl

[35] A. Chharia et al., “Deep-Precognitive Diagnosis: Preventing future
pandemics by novel disease detection with biologically-inspired Conv-
fuzzy network,” IEEE Access, vol. 10, pp. 23167–23185, 2022, doi:
10.1109/access.2022.3153059.

[36] J. Perez Tobia, P.-J. J. Huang, Y. Ding, R. Saran Narayan, A. Narayan,
and J. Liu, “Machine learning directed aptamer search from conserved
primary sequences and secondary structures,” ACS Synth. Biol., vol. 12,
no. 1, pp. 186–195, 2023, doi: 10.1021/acssynbio.2c00462.

[37] N. Grover, A. Chharia, R. Upadhyay, and L. Longo, “Schizo-Net: A
novel Schizophrenia Diagnosis framework using late fusion multimodal
deep learning on Electroencephalogram-based Brain connectivity in-
dices, IEEE Trans. Neural Syst. Rehabil. Eng., vol. PP, pp. 1–1, 2023,
doi: 10.1109/TNSRE.2023.3237375.

[38] J. Kalra et al., “How Visual Stimuli evoked P300 is transforming the
brain-computer interface landscape: A PRISMA compliant systematic
review,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 31, pp. 1429–1439,
2023, doi: 10.1109/TNSRE.2023.3246588.

[39] A. Chharia and R. Upadhyay, “Deep recurrent architecture based scene
description generator for visually impaired,” in 2020 12th Interna-
tional Congress on Ultra Modern Telecommunications and Control
Systems and Workshops (ICUMT), IEEE, 2020, pp. 136–141, doi:
10.1109/ICUMT51630.2020.9222441.

APPENDIX A
K-MER & REVCK-MER BASED APTAMER ENCODING

k-mers are k-length DNA sub-sequences (A, T , C, and
G). Since T (Thymine) in DNA is similar to U (Uracil) in
RNA, each RNA sequence was converted to DNA by replacing
U to T . In this work, each aptamer was encoded into 84-
dimension (for k = 3) and 339-dimension (for k = 4). To
estimate the revck-mer, firstly, the reverse complement of a
DNA sequence is estimated. This is done by replacing T and
A, exchanging G and C, and reversing the letters. The total
possible number of reverse complement k-mer is 22k−1 (for
k = 1, 3, 5, ...) and 22k−1 + 2k−1 (for k = 2, 4, 6, ...). In
this study, k = 3, 4 and each aptamer is encoded as 44-
dimensional vector (for k = 3) and 179-dimensional vector
(for k = 4). repDNA (python implementation available at
https://github.com/liufule12/repDNA) is utilized for generating
aptamer characteristics [20].

APPENDIX B
PSEAAC BASED TARGET PROTEIN SEQUENCE ENCODING

AAC is a protein sequence feature based on protein at-
tributes that includes folding types, secondary structure, do-
main, sub-cellular location, etc. It estimates each amino acid’s
frequency in a protein sequence. For a protein sequence with
N amino acid residues, residue frequency was considered as

follows: f(t) = N(t)
N , where N(t) is the number of amino

acid type t. Similarly, PseAAC [12] is a group of descriptors
for prediction of protein sub-cellular properties and has been
used as an effective feature extraction method especially in
bioinformatics. Given a protein chain P with N amino acid
residues: P = R1R2R3...RN . The sequence order effect of
protein can be represented by discrete correlation factor set:



θ1 = 1
L−1

∑L−1
i=1 Θ(Ri, Ri+1)

θ2 = 1
L−2

∑L−2
i=1 Θ(Ri, Ri+2)

θ3 = 1
L−3

∑L−3
i=1 Θ(Ri, Ri+3)

...

θλ = 1
L−λ

∑L−λ
i=1 Θ(Ri, Ri+λ), (λ < L)

(7)

where θ1, θ2, ..., θλ are 1-tier, 2-tier, and λth-tier correlation
factors respectively. The overall correlation function is,

Θ(Ri, Rj) =
1

3

{[
H1(Rj)−H1(Ri)

]2
+

[
H2(Rj)−H2(Ri)

]2
+
[
M(Rj)−M(Ri)

]2}
(8)

where, H1(Ri), H2(Ri), and M(Ri) are some properties
(e.g., physicochemical, conformational, and energetic) value
for the amino acid Ri; and also H1(Rj), H2(Rj), and M(Rj)
are the corresponding values of the amino acid Rj which is
estimated as follows. Here, H1(i), H2(i), and M(i) represent
the original values of amino acid properties.



H1(i) =
H0

1 (i)−
∑20

i=1

H0
1(i)

20√∑20
i=1

[
H0

1(i)−
∑20

i=1

H0
1(i)

20

]
20

H2(i) =
H0

2 (i)−
∑20

i=1

H0
2(i)

20√∑20
i=1

[
H0

2(i)−
∑20

i=1

H0
2(i)

20

]
20

M(i) =
M0(i)−

∑20
i=1

M0(i)
20√∑20

i=1

[
M0(i)−

∑20
i=1

M0(i)
20

]
20

(9)

Overall, the vector representation of PseAAC for a protein
sequence is given by [V1, V2, ..., V20, V21, ..., V20+λ]

T . Here,
T represents the transpose operator.

f(x) =

{ fu∑20
i=1 fi+ω

∑λ
j=1 θj

(1 ≤ u ≤ 20)

ωθu−20∑20
i=1 fi+ω

∑λ
j=1 θj

(20 + 1 ≤ u ≤ 20 + λ)

(10)
Here, fi represents the frequency of occurrences of 20 amino
acids and θj represents jth tier sequence correlation factor
found using Eqn. 1. ω shows the weight factor of the sequence
order effect. For the study, ω = 0.05. The first 20 components
shows the AAC effect whereas the remaining components
(20+1 to 20+λ) show sequence order. The whole of 20+λ
will be PseAAC. Thus λ = 30.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on December 14,2023 at 01:08:56 UTC from IEEE Xplore.  Restrictions apply. 


		2023-07-26T09:21:44-0400
	Preflight Ticket Signature




